$(\sqrt{x^2y^2})$

Merkhilfe Mathematik

Dies ist keine Formelsammlung im klassischen Sinn - die verwendeten Bezeichnungen werden nicht erklärt und Voraussetzungen für die Gültigkeit der Formeln werden in der Regel nicht angegeben.

Teil I: Stoffgebiete der Mittelstufe

Lösungsformel für quadratische Gleichungen

Lösungsformel für
$$x^2 + px + q = 0$$
: $x_{1,2} = -\frac{p}{2} \pm \sqrt{-q + \frac{p^2}{4}}$

• Negative Exponenten:
$$a^{-1} = \frac{1}{a^{1}}$$
; $a^{-n} = \frac{1}{a^{n}}$

• Gebrochene Exponenten:
$$a^{\frac{1}{2}} = \sqrt{a}$$
; $a^{\frac{1}{n}} = \sqrt[n]{a}$; $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

• Potenzgesetze: (P1)
$$a^x \cdot a^y = a^{x+y}$$
 (P2) $a^x : a^y = a^{x-y}$

(P3)
$$a^x \cdot b^x = (a \cdot b)^x$$
 (P4) $a^x : b^x = (a : b)^x$

(P5)
$$(a^x)^y = a^{x \cdot y}$$

Logarithmen

• Logarithmengesetze: (L1)
$$\log_b(u \cdot v) = \log_b(u) + \log_b(v)$$

(L2)
$$\log_b \left(\frac{u}{v}\right) = \log_b(u) - \log_b(v)$$

(L3)
$$\log_b(u^r) = r \cdot \log_b(u)$$

• Basisumrechnung:
$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$$

Ähnliche Dreiecke

- Wenn zwei Dreiecke in den Maßen zweier Winkel übereinstimmen, dann sind sie ähnlich.
- In ähnlichen Dreiecken sind die Längenverhältnisse entsprechender Seiten gleich.

Rechtwinkliges Dreieck

• Pythagoras: $a^2 + b^2 = c^2$

• Höhensatz: $h^2 = p \cdot q$

• Kathetensatz: $a^2 = c \cdot p$; $b^2 = c \cdot q$

• Winkelfunktionen:

$$A \xrightarrow{\alpha} q \xrightarrow{c} p \xrightarrow{\beta} B$$

$$\sin(\alpha) = \frac{a}{c}$$
; $\cos(\alpha) = \frac{b}{c}$; $\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{a}{b}$

Besondere Winkel

	0°	30°	45°	60°	90°
$\sin(\alpha)$	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
$\cos(\alpha)$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
$tan(\alpha)$	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	_

Allgemeines Dreieck

• Sinussatz: $a:b=\sin(\alpha):\sin(\beta)$

 $a:c=\sin(\alpha):\sin(\gamma)$

 $b: c = \sin(\beta): \sin(\gamma)$

• Kosinussatz: $a^2 = b^2 + c^2 - 2bc \cdot \cos(\alpha)$

 $b^2 = a^2 + c^2 - 2ac \cdot \cos(\beta)$

 $c^2 = a^2 + b^2 - 2ab \cdot \cos(\gamma)$

Sinus und Kosinus

• $\sin(-\alpha) = -\sin(\alpha)$

• $\cos(-\alpha) = \cos(\alpha)$

• $\sin(90^{\circ} - \alpha) = \cos(\alpha)$

• $\cos(90^{\circ} - \alpha) = \sin(\alpha)$

• $\sin^2(\alpha) + \cos^2(\alpha) = 1$

Ebene Figuren

Figur	Eigenschaft	Flächeninhalt	
Dreieck A g B		$A = \frac{1}{2} \cdot g \cdot h_g$	
Gleichschenkliges Dreieck a a	Mindestens zwei Seiten sind gleich lang.		
Gleichseitiges Dreieck a a	Alle Seiten sind gleich lang.	$A = \frac{a^2}{4} \cdot \sqrt{3}$	
Parallelogramm $ \begin{array}{c c} h_g \\ \hline & g \end{array} $	Gegenüberliegende Seiten sind jeweils parallel.	$A = g \cdot h_g$	
Raute h e	Alle vier Seiten sind gleich lang.	$A = a \cdot h = \frac{1}{2} \cdot e \cdot f$	
Trapez c $h \cdot m$ a	Mindestens zwei gegen- überliegende Seiten sind parallel.	$A = \frac{a+c}{2} \cdot h = m \cdot h$	
Drachen	Es gibt zwei Paare gleich langer Seiten.	$A = \frac{1}{2} \cdot e \cdot f$	
Kreis	Alle Punkte der Kreislinie besitzen vom Mittelpunkt denselben Abstand.	$A = \pi r^2$ $U = 2\pi r \text{(Umfang)}$	

Räumliche Figuren

Figur	Volumen / Oberfläche				
Prisma h G	$V = G \cdot h$				
Gerader Kreiszylinder	$V = G \cdot h = \pi r^2 \cdot h$ $M = 2\pi r \cdot h \text{(Mantelfläche)}$ $O = 2\pi r \cdot (h+r)$				
Quader	$V = a \cdot b \cdot c$ $e = \sqrt{a^2 + b^2 + c^2}$ (Raumdiagonale)				
Gerade Pyramide	$V = \frac{1}{3}G \cdot h$				
Gerader Kreiskegel	$V = \frac{1}{3}\pi r^2 \cdot h$ $M = \pi r s \text{ (Mantelfläche)}$				
Kugel	$V = \frac{4}{3}\pi r^3$				

Teil II: Analysis

Grenzwerte

- $\bullet \quad \lim_{x \to +\infty} \frac{x^r}{a^x} = 0^+$ $\bullet \quad \lim_{x \to -\infty} (x^r \cdot e^x) = 0^{\pm}$
- (Die e-Funkt, dominiert.)

- $\lim_{x \to +\infty} \frac{\ln(x)}{r^r} = 0$ (r > 0) $\lim_{x \to 0^+} (x^r \cdot \ln(x)) = 0$ (r > 0) (Die Potenzfunkt. dominiert.)

Ableitungsregeln

- Ableitung: $f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$ (Falls der Grenzwert existiert und endl. ist.)
- Mittlere Änderungsrate von f über dem Intervall [a;b]: $\frac{f(b)-f(a)}{b-a}$
- Lokale (momentane) Änderungsrate von f an der Stelle a: $\lim_{x \to a} \frac{f(x) f(a)}{x = a}$

Ableitung der Grundfunktionen

- $(x^r)' = r \cdot x^{r-1} \quad (r \in \mathbb{R})$ • Potenzfunktion:
- $(\sin(x))' = \cos(x)$ • Sinusfunktion:
- Kosinusfunktion: $(\cos(x))' = -\sin(x)$
- $(e^x)' = e^x$ • e-Funktion:
- $(\ln(x))' = \frac{1}{x}$ • In-Funktion:
- Allg. Exponential function: $(a^x)' = a^x \cdot \ln(a)$

Ableitungsregeln

- Summerregel: h(x) = f(x) + g(x) h'(x) = f'(x) + g'(x)
- Faktorregel: $h(x) = \alpha \cdot f(x)$ $h'(x) = \alpha \cdot f'(x)$
- Produktregel: $h(x) = f(x) \cdot g(x)$ $h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
- Quotientenregel: $h(x) = \frac{f(x)}{g(x)}$ $h'(x) = \frac{g(x) \cdot f'(x) f(x) \cdot g'(x)}{[g(x)]^2}$
- Kettenregel: h(x) = f(g(x)) $h'(x) = f'(g(x)) \cdot g'(x)$

Anwendungen der Differenzialrechnung

• Symmetrie	Achsensymmetrie zur y	-Achse:	f(-x) =	f(x)	für alle <i>x</i>
	Punktsymmetrie zum U	rsprung:	f(-x) =	-f(x)) für alle x
• Spiegelung	an der x-Achse:	<i>y</i> =	-f(x)		
	an der y-Achse:	<i>y</i> =	= f(-x)		
• Verschiebung	g um c in x-Richtung:	<i>y</i> =	= f(x-c)		
	um d in y-Richtung:	<i>y</i> =	= f(x) + d		
• Streckung	mit Faktor $\frac{1}{b}$ in x-Rich	tung: y =	$= f(b \cdot x)$		
	mit Faktor a in y-Richt	ung: y =	$=a\cdot f(x)$		
• Tangente	Tangentensteigung:	m_{T}	$=f'(x_0)$		
	Tangentengleichung:	<i>y</i> =	$= f'(x_0) \cdot ($	$x-x_0$	$+f(x_0)$
• Normale	Normalensteigung:	$m_{\scriptscriptstyle m N}$	$\frac{1}{f'(x_0)} = -\frac{1}{f'(x_0)}$)	
	Normalengleichung:	<i>y</i> =	$= -\frac{1}{f'(x_0)}.$	(x-x)	$x_0) + f(x_0)$
• Monotonie	f'(x) < 0 im Intervall I	$\Rightarrow f$ fä	illt streng	mono	oton in I .
	f'(x) > 0 im Intervall I	$f \Rightarrow f w$	ächst stre	ng mo	onoton in I .
• Hochpunkt	$f'(x_0) = 0$ und VzW ,,+ nach -" $\text{von } f' \text{ bei } x_0$	Hoch $H(x_0)$	npunkt $ f(x_0) $	($f'(x_0) = 0$ und $f''(x_0) < 0$
• Tiefpunkt	$f'(x_0) = 0$ und $VzW ,,- nach +"$ $von f' bei x_0$	Tief $T(x_0)$	Fpunkt $ f(x_0) $	($f'(x_0) = 0$ und $f''(x_0) > 0$
	$f''(x_0) = 0$ $\text{und} \qquad \Rightarrow$ $VzW \text{ von } f'' \text{ bei } x_0$		lepunkt $ f(x_0) $	($f''(x_0) = 0$ und $f'''(x_0) \neq 0$

• Winkel Steigungswinkel an einer Stelle x_0 : $\tan(\alpha) = f'(x_0)$ Orthogonalität bei x_0 : $f(x_0) = g(x_0)$ und $f'(x_0) \cdot g'(x_0) = -1$.

Hauptsatz der Differenzial- und Integralrechnung

Jede Integralfunktion einer über einem Intervall stetigen Funktion f ist eine Stammfunktion von f.

Ableitung der Integralfunktion: Für $I(x) = \int_{0}^{x} f(t) dt$ gilt I'(x) = f(x).

Berechnung bestimmter Integrale

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = [F(x)]_{a}^{b}, \text{ wobei } F \text{ eine Stammfunktion von } f \text{ ist.}$$

Wichtige Stammfunktionen

Funktion f	Stammfunktion F	Funktion f	Stammfunktion F
$f(x) = x^r$	$F(x) = \frac{x^{r+1}}{r+1} (r \neq -1)$	$f(x) = \frac{1}{x}$	$F(x) = \ln x $
$f(x) = \sin(x)$	$F(x) = -\cos(x)$	$f(x) = \cos(x)$	$F(x) = \sin(x)$
$f(x) = e^x$	$F(x) = e^x$	$f(x) = \ln(x)$	$F(x) = x \cdot \ln(x) - x$

Besondere Integrale

- $\bullet \int_{-\infty}^{\infty} \frac{f'(x)}{f(x)} dx = \left[\ln|f(x)| \right]_{a}^{b}$ (Im Zähler steht die Ableitung des Nenners.)
- $\bullet \int_{a}^{b} f'(x) \cdot e^{f(x)} dx = \left[e^{f(x)} \right]_{a}^{b}$ $\bullet \int_{a}^{b} f(ax+b) dx = \frac{1}{a} \cdot \left[F(ax+b) \right]_{a}^{b}$ (Innere Ableitung tritt als Faktor auf.)
- (Dabei ist F eine Stammfunktion von f.)

Uneigentliches Integral

$$\int_{a}^{+\infty} f(x) dx = \lim_{z \to +\infty} \int_{a}^{z} f(x) dx$$
 (Flächen, die ins Unendliche reichen)

Anwendung der Integralrechnung

- $V = \pi \cdot \int_{a}^{b} (f(x))^{2} dx$ $\overline{y} = \frac{1}{b-a} \cdot \int_{a}^{b} f(x) dx$ • Rotationsvolumen um die *x*-Achse über [*a*; *b*]:
- Mittelwert einer Funktion über [a; b]:

Teil III: Vektorrechnung

Standardskalarprodukt im \mathbb{R}^3

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$$

Eigenschaften und Anwendungen des Skalarprodukts

• Zueinander senkrechte Vektoren: $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$

• Betrag eines Vektors: $|\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}}$

• Einheitsvektor: $\vec{a}^0 = \frac{\vec{a}}{|\vec{a}|}$

• Winkel zwischen zwei Vektoren: $\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$ mit $0^{\circ} \le \varphi \le 180^{\circ}$

Vektorprodukt im \mathbb{R}^3

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix} \qquad \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

Eigenschaften und Anwendungen des Vektorprodukts

- $\vec{a} \times \vec{b}$ steht senkrecht auf \vec{a} und \vec{b}
- $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\varphi)$ mit $0^{\circ} \le \varphi \le 180^{\circ}$
- Flächeninhalt A des Dreiecks ABC: $A = \frac{1}{2} \cdot \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|$
- Volumen *V* der dreiseitigen Pyramide *ABCD*: $V = \frac{1}{6} \cdot \left| (\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} \right|$

Mittelpunkt einer Strecke AB

 $\vec{m} = \frac{1}{2} \cdot (\vec{a} + \vec{b})$, wobei \vec{a} und \vec{b} die Ortsvektoren von \vec{A} und \vec{B} sind.

Schwerpunkt S des Dreiecks ABC

 $\vec{s} = \frac{1}{3} \cdot (\vec{a} + \vec{b} + \vec{c})$, wobei \vec{a} , \vec{b} und \vec{c} die Ortsvektoren von \vec{A} , \vec{b} und \vec{C} sind.

Geraden im \mathbb{R}^3

• Parametergleichung von g: $\vec{x} = \vec{a} + \lambda \cdot \vec{u}$

Ebenen im \mathbb{R}^3

• Parametergleichung von e: $\vec{x} = \vec{a} + \lambda \cdot \vec{u} + \mu \cdot \vec{v}$

• Normalengleichung von *e*: $\vec{n} \cdot (\vec{x} - \vec{a}) = 0$

• Koordinatengleichung von e: $n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 - c = 0$

Kugel im \mathbb{R}^3

Kreis mit Kugel mit dem Mittelpunkt $M(m_1|m_2|m_3)$ und dem Radius r:

• Vektorgleichung: $(\vec{x} - \vec{m})^2 = r^2$

• Koordinatengleichung: $(x_1 - m_1)^2 + (x_2 - m_2)^2 + (x_3 - m_3)^2 = r^2$

Schnittwinkel

• Gerade - Gerade:
$$\cos(\alpha) = \left| \frac{\vec{u}_1 \cdot \vec{u}_2}{|\vec{u}_1| \cdot |\vec{u}_2|} \right|$$

• Gerade – Ebene:
$$\sin(\alpha) = \left| \frac{\vec{n} \cdot \vec{u}}{|\vec{n}| \cdot |\vec{u}|} \right|$$

• Ebene – Ebene: $\cos(\alpha) = \left| \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1| \cdot |\vec{n}_2|} \right|$

Abstandsberechnungen

• Punkt – Punkt

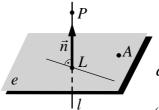
$$d(P;Q) = \left| \overrightarrow{PQ} \right| = \left| \overrightarrow{q} - \overrightarrow{p} \right| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + (q_3 - p_3)^2}$$

• Punkt – Ebene

Lotgeradenmethode

Gegeben: Punkt *P*

Ebene $e: \vec{n} \cdot \vec{x} - c = 0$



Abstandsformel

$$d(P;e) = \frac{1}{|\vec{n}|} \cdot |\vec{n} \cdot \overrightarrow{AP}|$$

(*A* bel. Punkt von *e*)

• Punkt – Gerade

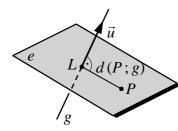
Lote benenmethode

Gegeben:

Punkt P

Gerade $g: \vec{x} = \vec{a} + \lambda \cdot \vec{u}$

Hilfsebene $e: \vec{u} \cdot (\vec{x} - \vec{p}) = 0$



Abstandsformel

$$d(P;g) = \frac{1}{|\vec{u}|} \cdot |\vec{u} \times \overrightarrow{AP}|$$

Teil IV: Wahrscheinlichkeitsrechnung.

Rechnen mit Wahrscheinlichkeiten

• Regeln von de Morgan: $\overline{A \cap B} = \overline{A} \cup \overline{B}$ und $\overline{A \cup B} = \overline{A} \cap \overline{B}$

• Zerlegungsregel: $A = (A \cap B) \cup (A \cap \overline{B})$

• Gegenereignisregel: $P(\overline{A}) = 1 - P(A)$

• Additions regel: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!}$$

Der Binomialkoeffizient gibt an, wie viele Möglichkeiten es gibt, aus einer Menge mit n Elementen eine Teilmenge mit k Elementen zu bilden.

Bedingte Wahrscheinlichkeit

$$P_{B}(A) = \frac{P(A \cap B)}{P(B)}$$

Unabhängigkeit von zwei Ereignissen

$$P(A \cap B) = P(A) \cdot P(B)$$

Urnenmodell

• Ziehen ohne Zurücklegen Aus einer Urne mit *n* Kugeln, von denen *m* schwarz sind, werden *k* Kugeln ohne Zurücklegen gezogen.

$$P(\text{,,genau } l \text{ schwarze Kugeln''}) = \frac{\binom{m}{l} \cdot \binom{n-m}{k-l}}{\binom{n}{k}}$$

Ziehen mit Zurücklegen
 Aus einer Urne, in der der Anteil der schwarzen Kugeln p ist, werden n
 Kugeln mit Zurücklegen gezogen.

$$P$$
(,,genau k schwarze Kugeln") = $\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$

Zufallsgröße - Binomialverteilung

Die Zufallsgröße X nehme die Werte $x_1, x_2, ..., x_n$ jeweils mit den Wahrscheinlichkeiten $p_1, p_2, ..., p_n$ an. Dann gilt:

• Erwartungswert

$$\mu = E(X) = \sum_{i=1}^{n} x_i \cdot p_i = x_1 \cdot p_1 + x_2 \cdot p_2 + \dots + x_n \cdot p_n$$

Varianz

$$Var(X) = E((X - \mu)^{2}) = \sum_{i=1}^{n} (x_{i} - \mu)^{2} \cdot p_{i}$$

$$= (x_{1} - \mu)^{2} \cdot p_{1} + (x_{2} - \mu)^{2} \cdot p_{2} + \dots + (x_{n} - \mu)^{2} \cdot p_{n}$$

$$Var(X) = E(X^{2}) - \mu^{2}$$

• Standardabweichung $\sigma = \sqrt{\text{Var}(X)}$

• Binomialverteilung Ist die Zufallsgröße *X* binomialverteilt nach *B* (*n*; *p*), so gilt:

$$P(X = k) = B(n; p; k) = \binom{n}{k} \cdot p^{k} \cdot (1 - p)^{n - k} \text{ für } k = 0, 1, 2, ..., n$$

• Erwartungswert: $E(X) = n \cdot p$

• Varianz: $\operatorname{Var}(X) = n \cdot p \cdot (1-p)$

Das $1/\sqrt{n}$ - Gesetz

Sei p die Wahrscheinlichkeit eines Ereignisses A sowie h_n die Zufallsgröße, welche die relative Häufigkeit des Eintretens von A in einer Serie von n Versuchen beschreibt, dann gilt mit einer Wahrscheinlichkeit von 95 %:

$$|p-h_n| \le \frac{1}{\sqrt{n}}.$$

Statistische Tests

Beim Testen einer Hypothese können folgende Fehler auftreten:

	H_0 ist wahr	H_0 ist falsch	
H_0 wird verworfen	Fehler 1. Art	Richtige Entscheidung	
H_0 wird nicht verworfen	Richtige Entscheidung	Fehler 2. Art	

Als **Signifkanzniveau** α bezeichnet man den Wert, den die Wahrscheinlichkeit für den Fehler 1. Art nicht überschreiten darf.

Arten von Signifikanztest

Testart	Nullhypothese H_0	Gegenhypothese H_1	Ablehnungsbereich
rechtsseitig	$p = p_0$	$p > p_0$	für H_0 5% 90% \overline{A} $\overline{A} = \{k_r + 1; \dots; n\}$ gegen H_0 5% \overline{A}
linksseitig	$p = p_0$	$p < p_0$	gegen H_0 $ \begin{array}{c} & \text{für } H_0 \\ & 5 \% \\ \hline & 90 \% \\ \hline & \overline{A} \\ \hline & \overline{A} \\ \hline & \overline{A} = \{0; 1 \dots; k_l - 1\} \end{array} $
beidseitig	$p \neq p_0$	$p = p_0$	$ \begin{array}{c c} & \text{gegen } H_0 \\ \hline 2.5 \% & 95 \% & 2.5 \% \\ \hline \hline A & A & A \\ \hline A & A & A \end{array} $ $ \overline{A} = \{0; 1 \dots; k_l - 1\} \cup \{k_r + 1; \dots; n\} $

σ -Umgebungen

68,3 % :	einfache σ -Umgebung	$\mu \pm 1 \cdot \sigma$	90%:	Intervall	$\mu \pm 1,64 \cdot \sigma$
95,4%:	doppelte σ -Umgebung	$\mu \pm 2 \cdot \sigma$	95%:	Intervall	$\mu \pm 1,96 \cdot \sigma$
99,7 %:	dreifache σ -Umgebung	$\mu \pm 3 \cdot \sigma$	98%:	Intervall	$\mu \pm 2,32 \cdot \sigma$
			99%:	Intervall	$\mu \pm 2,58 \cdot \sigma$

